

TDAQ Upgrade R&D WBS 4.6

Stephanie Majewski, University of Oregon

Phase-II Construction Managers Meeting July 15, 2015

Physics Motivation

- MET triggers are essential to searches for new physics, in addition to benchmark physics processes
 - Any hint of new physics in Runs 2 or 3 must be investigated in detail & corroborated through complementary channels
- Calorimeter Triggers in Phase-II
 - * Pileup mitigation in a harsh environment (up to μ =200) is critical to maintain the MET trigger performance
 - The forward region is particularly challenging
 - L1Global is especially important in the low & middle scenarios where the L1 rate is limited to 200 kHz
 - Opportunity for significant performance gains with a modest investment in R&D

Challenge of Forward Jets

Forward jets dominate at high pileup

Jet p_T and $|\eta|$ -spectra for $Z \rightarrow \mu\mu$ + jets vs μ (offline jets)

Leading jet transverse momentum [GeV] in Zmumu events

Leading jet |eta| in Zmumu events

Increase of average jet p_T with μ , no increase of tails Reason: more pile-up jets in the region lnl>2.5 not protected by JVF cut

6/15/2015

I.I. Tsukerman, LAr-upgrade meeting

27

Challenge of Forward Jets

As soon as the tracking boundary is reached, pileup jets take over (note: plot below is optimistic, does not include edge effects)

R. Polifka, U Toronto;

M. Testa, INFN Frascati

4.0 Forward TC, "275M" scenario

 η_{PU}

Topocluster-like Processing

- ❖ Topoclustering has proven especially effective against pileup in offline jet reconstruction and in the EF (HLT) in Run 1 (2)
- Φ_{noise} includes
 electronic ⊕ pile-up

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ JetEtmissApproved2013HighMuEtmiss

Topocluster-like Processing

- LAr Phase-I TDR Study only includes supercells in MET calculation if middle LAr layer satisfies |E| > 2σ
- ~20 GeV reduction in MET threshold for same rate (|η| < 4.9)</p>
- "Easy" to implement in LAr DPS or after L1 Accept, even in Phase I [assuming FPGA resources]

Topoclustering + Forward Jets

- Plenty of room for improvement between expected Run 3 performance and Offline
- Strategy is compatible with a potential finer granularity forward calorimeter (sFCal) and/or a high-granularity timing detector

Phase-II ATLAS Trigger

LAr Digital Processing System

Possible Implementation(s)

- \clubsuit In LAr DPS: Calculate whether E_T in each cell is above 4σ , 2σ , or 0
- Transmit resulting flagged cells via fiber? over ATCA backplane? to FELIX?

can exploit synergy with
US ATLAS TDAQ
deliverables from Phase-I
Construction Project

- "Clustering algorithm" performed in FPGA, in a dedicated module? superHub? aggregator?
- Benchmark against offline topoclustering
- Main Challenge (reason for R&D):
 - Topoclustering algorithm was developed for offline use on a CPU, and is a **sequential** algorithm
 - Cannot be implemented `out-of-the-box' in a FPGA
 - Engineering/technical expertise needed for adoption

Standalone Algorithm Development

Local

2-D topoclustering algorithm implemented in standalone simulation over coarse

(0.2x0.2) granularity

Simple local maximum finder in lieu of split/merge

Fixed threshold optimization performed; relative threshold (using noise) optimization in progress

TLAS Simulation Work In Progress

externally funded undergrads: Luc Lisi, Elliot Parrish, Brianna Stamas

using

Project Goals / Questions

- Phase-II TDAQ TDR by late 2017
 - L1Global especially important if limited to 200kHz
 - * R&D on topoclustering option needed to design the system!
- Outstanding questions
 - Can a clustering-like option (or one with similar performance) be implemented on a FPGA?
 - What is the latency of such an algorithm?
 - What is the optimal granularity to achieve performance goals (& can this be traded for latency?)
- Context within international ATLAS
 - L1Calo community currently occupied by Phase I
 - Results will be presented more frequently within L1Calo Simulation group

LDPS Blade [Demonstrator]

- Oregon LDPS blade has been moved to CERN/EMF to read out second LAr LTDB demonstrator
- Board tested in situ at EMF in June; test FW loaded and fully functional
- Data collection dependent on regional eta-phi selection trigger capability from L1Topo in the region of crate I06:
 0 < η < 1.4, 9/16π < φ < 11/16π

EMF @ CERN

Oregon LDPS Blade

Status and Milestones

Milestones for 2014/2015

- Install LDPS blade at Oregon ATCA shelf (equipment funded by S. Majewski startup with ATLAS collaborators)
- Develop firmware for reading out demonstrator that will be installed in ATLAS at end of 2014
- Use data playback on test system to test
 Phase-I/II MET clustering and pile-up
 corrections
- R&D funds support technician to install + maintain system and firmware (0.33 FTE)
- Algorithm development by externally funded students (0.3-0.5 FTE) and postdocs (0.3-0.5 FTE)

Status and Milestones

Milestones for 2014/2015

- Install LDPS blade at Oregon ATCA shelf
- √ (equipment funded by S. Majewski startup with ATLAS collaborators) + installation @ CERN
 - Develop firmware for reading out demonstrator that will be installed in ATLAS at end of 2014 basic fw version developed by other groups
 - basic fw version developed by other groups
 Use data playback on test system to test
 Phase-I/II MET clustering and pile-up corrections
 by end of Q2, eng less available (Ph I + future detector R&D); 0.3 FTE for Q4
 R&D funds support technician to install +
 - R&D funds support technician to install + maintain system and firmware (0.33 FTE)
- Algorithm development by externally funded students (0.3-0.5 FTE) and postdocs (0.3-0.5 FTE) needs engineering input

Technician hired at 0.3 FTE (+0.2 FTE from CS) for Q4

Milestones for FY16

- Continue algorithm development toward an early proof-of-principle version on a limited eta range and with coarse granularity [Q1 FY16, using 0.30 FTE engineer from Q4 FY15 + 0.5 FTE technician + students/postdoc supported by external funds]
- Develop firmware for reading out demonstrator & algorithm testing (carried over from last year, contingent on L1Topo commissioning) [0.25-0.3 FTE engineer in FY16] note: will be descoped without additional support
- Investigate additional algorithm possibilities and finer granularity [students/postdoc supported by external funds]

Summary

- ❖ A plan is needed to maintain the MET trigger performance for the HL-LHC
 - Opportunity to maintain US ATLAS leadership / deliverables in TDAQ
 - * R&D required to provide input into the system design for the TDAQ TDR (end 2017)
- Project lies at the intersection between LAr and TDAQ
 - Recognize need to stimulate R&D in this area in US and Int'l LAr
 +TDAQ communities, improve visibility
 - Opportunity for significant MET trigger performance gains with a modest investment in R&D
 - The US is in an excellent position to claim & maintain leadership in this area

2 LTDB demonstrators

❖ 2 demonstrators installed in Crate I06 in Summer 2014, analog path part of ATLAS trigger system

Digital motherboard, analog mezzanines (see talk by H. Chen): https://indico.cern.ch/event/337396/ contribution/7/material/slides/0.pdf

Analog motherboard, digital mezzanines (see talk by S. Simion): https://indico.cern.ch/event/337396/ contribution/6/material/1/0.pdf